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TT SYNOPSIS: The neuroplastic effects of anterior 
cruciate ligament injury have recently become 
more evident, demonstrating underlying nervous 
system changes in addition to the expected me-
chanical alterations associated with injury. Inter-
ventions to mitigate these detrimental neuroplastic 
effects, along with the established biomechanical 
changes, need to be considered in the rehabilita-
tion process and return-to-play progressions. This 
commentary establishes a link between dynamic 
movement mechanics, neurocognition, and visual 
processing regarding anterior cruciate ligament 
injury adaptations and injury risk. The proposed 
framework incorporates evidence from the 
disciplines of neuroscience, biomechanics, motor 
control, and psychology to support integrating 

neurocognitive and visual-motor approaches with 
traditional neuromuscular interventions during 
anterior cruciate ligament injury rehabilitation. 
Physical therapists, athletic trainers, strength 
coaches, and other health care and performance 
professionals can capitalize on this integration 
of sciences to utilize visual-training technologies 
and techniques to improve on already-established 
neuromuscular training methods.

TT LEVEL OF EVIDENCE: Therapy, level 5. J Or-
thop Sports Phys Ther 2015;45(5):381-393. Epub 
10 Jan 2015. doi:10.2519/jospt.2015.5549

TT KEY WORDS: ACL, motor control, neuroscience, 
return to sports

A
nterior cruciate ligament (ACL) rupture is a common 
activity-related knee injury that usually requires surgical 
reconstruction to restore knee stability and function.140 The 
lifetime burden of ACL injury ranges from $7.6 to $17.7 

billion per year in the United States.96 Despite surgical reconstruction 
and physical rehabilitation, injury of the ACL dramatically increases 
the risk for costly and long-term disabling osteoarthritis, associated 

cal factors, such as muscle strength, bal-
ance, and plyometric function, and give 
less consideration to cognitive or neu-
rological components.60,107,109,156 While 
rectifying the biomechanical profile and 
restoring muscle strength are vital com-
ponents of the rehabilitation process, 
there may be potential to improve func-
tion and decrease reinjury risk.58,99 Recent 
reports have found unresolved neuroplas-
tic alterations after injury, reconstruction, 
and rehabilitation that may limit function 
and return to sports participation.9,17,87,94 
By targeting these neurologic factors and 
integrating neurocognition during neuro-
muscular rehabilitation progressions, it 
may be possible to improve the transfer of 
sensorimotor adaptations from the clinic 
to activity, and ultimately to improve pa-
tient outcomes.16,61

The training, and even restoration, of 
primarily biomechanical factors relative 
to ACL-injury risk67,132 may not address 
all the physiologic consequences of in-
jury, as patient-reported dysfunction and 
poor movement control may persist for 
years.8,108,119,129,131,158 The impaired physi-
cal performance and patient-reported 
dysfunction might, in part, have a neu-
rologic origin.79,84,123 The capacity for 
neuroplasticity after injury and during 
therapy may present an opportunity to 

decreased lifelong physical activity, and 
decreased work productivity.4,14,93,96 Im-
portantly, reconstruction and rehabili-
tation that rely primarily on traditional 
neuromuscular interventions have a fail-
ure rate of up to 30% for rerupture after 
return to sport.74,120,121,154 This high failure 

rate is further compounded by the inabil-
ity of a majority of individuals to return to 
preinjury levels of activity.10

Although evidence supports neuro-
muscular training for effective injury pre-
vention and rehabilitation, many of these 
approaches primarily target biomechani-
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ACL Injury–Induced Sensory Visual-
Motor Processing Compensations
To better understand the rationale for 
how visual-motor training may enhance 
ACL-injury rehabilitation, a thorough 
understanding of the current evidence 
on neuroplastic changes associated with 
ACL injury is required. The overarching 
concept is that the CNS afferent input is 
disrupted due to the lost somatosensory 
signals from the ruptured ligament and 
increased nociceptor activity associated 
with pain, swelling, and inflammation. 
The disrupted sensory input and inju-
ry-associated joint instability, muscle 
atrophy, and movement compensations 
combine to facilitate motor control adap-
tations. The reconstruction process leads 
to further deafferentation of the joint, 
causing continued neuroplastic modifica-
tions that result in maladapted efferent 
neuromuscular output (FIGURE 1).

CNS Adaptations
In animal models, the ACL mechanore-
ceptor and afferent connections can be 
traced within the nervous system to the 
spinal cord, brain stem, and cerebral 
regions, contributing to proprioceptive, 
nociceptive, and reflex function.59,118 The 
initial sensorimotor neuroplasticity after 
ACL injury is likely caused by the abrupt 
loss of this connection, which once pro-
vided the nervous system with continu-
ous feedback.  In human studies, the 
afferent loss is demonstrated by altered or 
absent somatosensory-evoked potentials 
with stimulation of the common peroneal 
nerve37,39,147,148 or the ACL directly.125 The 
loss of primary afferent information com-
bined with the pain and inflammatory 
response contribute to fundamentally 
alter the somatosensory feedback.32,75,79,91 
The disrupted input, combined with me-
chanical changes and compensations110,131 
(contralateral loading,15,119 hip or ankle 
strategies48,56), facilitates the adaptations 
for motor control.68,128,129 On a founda-
tional level, altered motor output mani-
fests in disrupted gamma motor neuron 
function83,85,86 and perturbation reflex-
es,38,44 which play a key role in the abil-

place high demand on cognitive and 
sensorimotor processes and, in turn, 
increase ACL reinjury risk.26,68,82,88 In 
a constantly changing environment, 
the sensory system’s 3 primary afferent 
pathways (vestibular, visual, and so-
matosensory) provide the complex and 
integrated information necessary for 
the efferent neuromuscular control sys-
tem to maintain adequate stability and 
control.95,153 One area of sensorimotor 
function that may uniquely be affected 
by ACL injury is motor control requir-
ing visual feedback.95 The visual system 
provides a fundamental mechanism for 
coordination, regulation, and control of 
movement while managing environmen-
tal interactions (external focus).122,139,150 
Visual feedback is especially needed in 
executing movement sequences5,111 and 
increasing task complexity and variabil-
ity.40,89,128,150 The interplay between vision 
and somatosensation is particularly vital 
to provide sufficient afferent input to the 
central nervous system (CNS) to regu-
late motor control and to maintain neu-
romuscular integrity during action and 
environmental interaction.133,134,143,149,153 
In this sensory-to-motor feedback loop, 
changes to visual or sensory feedback 
lead to subsequent alterations in neu-
romuscular control during movement 
(closed-loop processing).23,95,133,143,150,153 
Trauma to the ACL has been shown to 
modify how the nervous system pro-
cesses these interactions between vision 
and somatosensation.2,3,55,79,115 Targeting 
injury-induced sensory-motor plastic-
ity presents a unique opportunity to im-
prove the translation of neuromuscular 
system enhancements from the reha-
bilitation environment to the return-
to-sport environment.29,76,100 Thus, our 
purpose in this commentary is to high-
light the contributions of nervous sys-
tem function and reorganization in the 
ACL-injury rehabilitation process, and 
specifically how adding visual-motor ap-
proaches during neuromuscular training 
may mitigate potentially limiting factors 
during return to high-demand physical 
activities.

close the gap between rehabilitation and 
activity by targeting a broader spectrum 
of sensorimotor function during neuro-
muscular training.58,64,108,109 Alternative 
approaches and adjunct therapies may 
help to address the neurological sys-
tem functions associated with the faulty 
movement patterns underlying ACL rein-
jury risk.18,87,94,121

As an example, typical rehabilitative 
exercises are completed with an internal 
focus of control, meaning that full atten-
tion is directed to the internal aspects 
of the movement only (eg, avoidance of 
excessive knee valgus or increasing knee 
flexion).20,155,156 Internal focus can offer 
positive benefits early in rehabilitation, 
when the need to develop or restore a 
motor pattern or muscle contraction 
ability is vital. But, function in the ath-
letic environment, or even in activities 
of daily living, requires constant interac-
tions with the dynamic and constantly 
changing visual environment. Sport and 
activities of daily living therefore require 
an external focus of control, where at-
tention is directed to the environment 
and the body relies on automatic mo-
tor control to maintain joint-to-joint 
integrity.11,41,128

The need to challenge a broad spec-
trum of sensorimotor control is demon-
strated by the noncontact ACL-injury 
scenario: a failure to maintain knee neu-
romuscular control while attending to 
an external focus of attention, involving 
highly complex dynamic visual stimuli, 
variable surfaces, movement planning, 
rapid decision making, variable player 
positions and environment interactions, 
and unanticipated perturbations.26,68,82,88 
The need to bridge the intense neuro-
cognitive and motor control demands 
of sport during rehabilitation may 
therefore benefit from specific interven-
tions that target these neurocognitive 
factors in addition to the biomechani-
cal techniques that are already widely 
addressed.

The transition from rehabilitation 
to sport activity is challenged by com-
plex environmental interactions that 
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This partial deafferentation is further il-
lustrated by investigations utilizing tran-
scranial magnetic stimulation to assess 
the CNS efferent pathway between the 
quadriceps and the brain.65,90,113,123 Her-
oux and Tremblay65 reported enhanced 
resting corticomotor excitability in those 
with ACL injury. A potential mechanism 
for increased resting motor cortex excit-
ability may be due to the affected sen-
sory feedback, as the brain attempts to 
maintain motor output with attenuated 
sensory input. This increase in excitabil-
ity may increase potential feedforward 
mechanisms by decreasing the thresh-
old for connections with motor plan-
ning areas, or allow for increased input 
from other sensory sources (vision, ves-
tibular).62,116,144,159 A recent neuroimaging 
investigation by Kapreli et al79 provides 
further evidence of the neuroplastic ef-
fects of ACL injury. They performed func-
tional magnetic resonance imaging of 
the brain during knee flexion and exten-
sion, and found that those with an ACL 
injury had increased activation of the 
presupplementary motor area, posterior 
secondary somatosensory area, and pos-
terior inferior temporal gyrus compared 
to matched controls.79 The presupple-
mentary motor area is highly involved in 
complex motor planning,12,111 and, despite 
the relative simplicity of the movement 
task (single-joint movement of 40° of 
knee flexion/extension while lying su-
pine), those with an ACL injury needed to 
engage higher-level motor control areas 
to a greater degree to execute the move-
ment. This increased activation may indi-
cate that, on a neural control level, simple 
movements are more taxing to those with 
a previous ACL injury.104 The increase in 
posterior secondary somatosensory area 
provides further evidence of sensory-
based neuroplasticity after injury, as this 
area is involved in regulating painful 
stimuli but is highly interconnected with 
the anterior secondary somatosensory 
area that integrates somatosensory in-
puts.33,49,145 Interestingly, the participants 
in the study did not report pain during 
the movement, conceivably indicating 

roplasticity and altered mechanical and 
biological function of the joint combine 
to reduce proprioception acuity as mea-
sured by joint position sense,27,92 move-
ment detection,27,54 and force sense.66 To 
investigate the neurologic adaptations of 
functional sensory loss, Baumeister et 
al17,18 used electroencephalography during 
force- and joint-sense tasks and found 
that those with ACL reconstructions had 
greater brain activation in attentional 
and sensory areas. The increased acti-
vation may be attributed to less neural 
efficiency or increased neural load to 
complete the same task; interestingly, 
despite increased cortical activation, pro-
prioceptive performance was still worse 
in those with ACL reconstruction as com-
pared to controls.17,18 These results indi-
cate that the loss of the native ACL not 
only constitutes a mechanical instability 
but also a degree of nervous system deaf-
ferentation that is not rectified with re-
constructive surgery and rehabilitation.78 

ity to maintain neuromuscular integrity 
in a changing environment that requires 
rapid and precise muscle stiffness or ac-
tivation strategies.30,81,145 The lost ability 
to rely on reflex and gamma motor neu-
ron drive to prepare alpha motor neuron 
function requires the CNS to engage in 
supplementary mechanisms, such as in-
creased utilization of visual feedback, to 
maintain the required sensory input for 
motor control. As such, neuromuscular 
control after ACL injury may require 
enhanced visual feedback, depriving the 
CNS of resources once used for managing 
environmental interaction to maintain 
knee joint stability.

These deficits in neural function are 
not rectified with ACL reconstruction 
and may become even more pronounced 
and/or present bilaterally.24,83,84,87,94,130,148 
The bilateral motor control, reflex, and 
proprioceptive changes are theorized to 
be due to both spinal59,118 and supraspi-
nal39,123 mechanisms.124 This ongoing neu-

•  A�erent input disrupted
•  Somatosensory processing altered

•  Inhibited joint position and motion detection
•  Depressed somatosensory contribution to motor control

•  E�erent output altered
•  Motor processing requires more planning 

and visual feedback

•  Decreased stability without 
visual feedback

•  Visual feedback 
reliance to maintain 
neuromuscular control

Sensory 
neuroplasticity

Proprioception

Motor 
neuroplasticity

Postural control

Movement 
control

FIGURE 1. The conceptual framework for neurologic and visual-motor adaptations after ACL injury, a cascade of 
neuroplasticity following ACL injury that contributes to visual feedback dependence to maintain neuromuscular 
control. Abbreviation: ACL, anterior cruciate ligament.
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and greater reliance on visual feedback. 
This ACL injury–induced neuroplasticity 
can have consequences for function and 
further injury risk, as the visual feedback 
and motor planning neural mechanisms 
become overloaded in the athletic envi-
ronment. Specific additions to current 
neuromuscular interventions targeting 
these neuroplastic imbalances may play 
a significant role to induce sensorimo-
tor adaptations to decrease dependence 
on visual feedback when transitioning to 
more demanding activities.

Visual-Motor Training  
as a Rehabilitation Tool
Typically, neuromuscular interven-
tions (eg, plyometrics, balance training, 
strengthening exercises) allow full focus 
of attention on the movement, whereas 
in sporting situations this is rarely the 
case.88,98 Traumatic injuries (ACL rup-
tures) tend to occur during complex 
game situations when the player must 

in healthy athletes with the addition of a 
defender,102 a virtual soccer interface,36 or 
a level of unanticipated decision making 
during the task (selecting direction).101,126 
The effect of occupying the visual system 
with environmental cues during landing 
or change of direction is even greater in 
those with a history of ACL injury.72,73

These findings, taken together, sug-
gest that ACL injury may lead to a 
cascade of neuroplastic and neuromus-
cular alterations that increase reliance 
on visual feedback and cortical motor 
planning for the control of knee move-
ment. The postinjury disrupted sensory 
feedback, combined with the observed 
motor compensations, contributes to 
fundamentally alter the CNS mecha-
nisms for motor control.1,17,18,80,94,147,148,160 
In attempting to regulate neuromuscu-
lar control in the presence of decreased 
somatosensory input, the nervous system 
supplements with increased motor plan-
ning, conscious cortical involvement, 

a sensory processing adaptation from 
the initial increase in nociceptive input 
from the traumatic nature of the injury. 
Alternatively, the prolonged nature of 
the rehabilitation, chronic pain, or joint 
instability may continue to disrupt typi-
cal somatosensory-system afferent inte-
gration. The posterior inferior temporal 
gyrus plays a role during many cerebral 
functions,25,28 but may primarily be in-
volved with visual processing of move-
ment.122 As such, an increase in posterior 
inferior temporal gyrus activation during 
movement may indicate that, in response 
to ACL injury, there is an increased uti-
lization of visual processing and motor 
planning resources for movement con-
current with depression of somatosen-
sory function.37,39,55,79,147,148

Biomechanical Adaptations
These neuroplastic observations follow-
ing ACL injury are further supported by 
biomechanical evidence suggesting that 
with increased task complexity, neu-
romuscular control is deteriorated in 
individuals with an ACL injury or re-
construction to a greater extent than in 
controls, possibly due to overload of 
motor planning resources.73,112 The spe-
cific neuroplastic visual-motor control 
adaptation is observed during static 
balance, as those with ACL injury have 
significantly diminished postural control 
when vision is obstructed (blindfold or 
eyes closed),114,115 but limited to no deg-
radation in postural control with eyes 
open, as they are able to use vision to 
compensate and maintain balance.69,97 A 
more pronounced effect on neuromuscu-
lar control is observed when disrupting 
visual-motor processing during complex 
landing and cutting maneuvers that play 
an even greater role in injury risk.102,103,142 
The simple addition of a target during a 
jump-landing task increased injury risk 
mechanics52 and altered muscle activa-
tion, decreasing postural stability.152 The 
effects of forcing visual focus on the en-
vironment during more complex cutting 
or direction-change tasks further de-
grade neuromuscular control capability 

Injury: structure damage

Neuromuscular control adaptations
•  Depressed somatosensory-motor control
•  Increased visual feedback dependence
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Utilization of vision via motor 
control compensations

Utilization of somatosensation via 
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Compensatory sensorimotor control 
strategy

Adaptive sensorimotor control 
strategy

Ad
ap

tiv
e 

Pl
as

tic
ity+ +

= =

FIGURE 2. Conceptual training model. The top indicates the neuromuscular cascade of events postinjury, the left 
column is the traditional training model reinforcing the visual feedback overreliance for motor control, and the 
right column indicates the proposed integration of modified visual feedback training to decrease visual reliance 
and improve sensory-motor function.
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as an adjunct to traditional rehabilita-
tion may more closely mimic actual ac-
tivity demands via escalated load on the 
neurocognitive system36,52,98,102,152 and 
smooth the transition back to activity by 
providing a closer analog to the inherent 
environmental challenges of sport.95,98 
Historically, the primary method to dis-
rupt the visual feedback system has been 
to use complete visual obstruction (eyes 
closed or blindfold). This kind of visual 
deprivation presents a motor control 
challenge in a healthy population133 and 
has a more pronounced effect in indi-
viduals with an ACL injury.55,115 However, 
rehabilitation using eyes-closed or blind-
folded conditions55 has been restricted to 
static balance,115 proprioceptive,55 or sim-
plified single-movement34,133 tasks. The 
influence of modifying the visual input 
by any means (ball, defender, blindfold, 
target, visual signals) during more chal-
lenging dynamic tasks, such as rapid di-
rection change or jump landing, has an 
even greater effect on neuromuscular 
control.34,36,52,133,152

Direct Visual Disruption
Ideally, inhibiting visual input during 
these dynamic, more athletic maneu-
vers would provide a means to directly 
address the compensatory neuroplastic 
sequelae after ACL injury and train the 
neuromuscular system in a functional 
manner. A recent technological innova-
tion has made this possible by decreas-
ing visual input without fully removing 
it.21,22 This tool, stroboscopic eyewear 
(eg, PLATO Visual Occlusion Spectacles 
[Translucent Technologies Inc, Toronto, 
Canada], Nike SPARQ Vapor Strobes 
[Nike Inc, Beaverton, OR], PRIMARY 
Strobe Glasses [Appreciate Co, Ltd, Kyo-
to, Japan]) (FIGURE 3), has the ability to 
partially obstruct vision by intermittently 
switching from clear to opaque, allowing 
highly complex, dynamic athletic ma-
neuvers to be performed under degraded 
visual input (FIGURE 4).6,21,22,106 Practice 
with a stroboscopic vision system has 
already been shown to enhance aspects 
of basic visual cognition, such as tran-

rehabilitative methods may even be fur-
ther contributing to the neuromuscular 
control compensations and facilitating 
possible compensatory neuroplasticity 
(FIGURE 2).17,18,65,79,83,87,129 Recognizing and 
addressing the specific postinjury neuro-
plasticity during neuromuscular training 
may provide an avenue for the clinician to 
address both the physical and neurocog-
nitive demands of return to sport.13,121,157

This framework highlights 3 related 
sensorimotor adaptations occurring in 
the athlete with an ACL injury: (1) de-
pressed or disrupted somatosensory 
input and altered sensorimotor process-
ing, which induce (2) increased visual 
processing to plan movement and main-
tain neuromuscular control and (3) in-
creased cortical top-down motor control 
strategies.

Modifying Visual Feedback
The need to transfer neuromuscular 
control strategies from the stable train-
ing environment to the chaotic athletic 
field requires that interventions integrate 
complex sensory inputs (environmen-
tal stimulus, visual and proprioceptive 
acuity) in conjunction with the mo-
tor outputs (strength, movement qual-
ity).2,17,18,20,55,61 Disrupting visual feedback 

manage multiple variables (eg, ball, 
players, field position, game strategy) 
requiring full visual attention to the en-
vironment, theoretically leaving less 
cognitive processing resources for neu-
romuscular control.26,68,71,82,88,98 These en-
vironmental demands and the increased 
need for visual feedback for knee con-
trol in individuals after ACL injury55,79,115 
combine to create a higher-risk state for 
the athlete. This framework indicates a 
CNS alteration of afferent processing, to 
compensate for the lost somatosensory 
contribution by increasing utilization 
of visual resources for neuromuscular 
control, which may be an adaptation of 
the disrupted proprioceptive afferent in-
put from the damaged ACL and associ-
ated noxious stimuli.1,17,18,50,117 It is possible 
that after extensive time and/or training, 
a measure of motor function may be re-
stored, but at the expense of compensa-
tions that allow the sensory deficits to 
remain.2,53,57 Motor function may normal-
ize with basic tasks in the clinic, such as 
hop or strength tests, but may not trans-
fer to the demanding athletic environ-
ment, where the proprioceptive sensory 
loss may result in impaired motor func-
tion as the task and environmental com-
plexities increase.19,46,76,77 Currently used 

FIGURE 3. Strobe glasses. The bottom picture on the left is the opaque condition and on the right is the clear 
condition. These conditions continuously alternate, with potential for 8 settings, with the clear condition always 
lasting 100 milliseconds and the opaque conditions varying from 25 milliseconds to 900 milliseconds. The top 
picture provides an illustrative example of a first-person perspective with the glasses at a moderate level of 
occlusion (approximately level 5 or 6, with a 150- to 233-millisecond opaque interval).
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After injury, the CNS experiences a 
compensatory overutilization of visual 
feedback to maintain neuromuscular 
control. The suggested intermittent visu-
al training can decrease the available vi-
sual feedback to the CNS. This may force 
the CNS to engage in an adaptive strategy 
by increased weighting of the remaining 
proprioceptive inputs, as opposed to con-
tinuing to compensate with visual feed-
back (FIGURE 2). The neural mechanisms 
underlying this sensory visual-motor in-
teraction are theoretical at this point, but 
may include increased utilization or effi-
ciency of the remaining proprioceptive or 
vestibular inputs, and/or improved visu-
al-motor processing efficiency to make up 
for the increased demand. Alternatively, 
intermittent visual training could lead 
to increased attentional focus70 and/or 
changes in the rate of memory consoli-

This adjustability is an important fea-
ture because postinjury, visual interfer-
ence could increase reinjury risk during 
rehabilitation, particularly if the athlete 
has not yet adapted to the depressed 
visual feedback. The ability to scale the 
level of interference up or down provides 
a means for the clinician to progress the 
patient, based on clinical judgment. Also, 
a warm-up period is recommended to al-
low patients to familiarize themselves 
with the visual effect by doing less ag-
gressive movements, such as single-leg 
balance or upper extremity exercises (ball 
toss), before advancing to jump-landing 
or direction-change tasks. The eyewear 
is also wireless and portable, making for 
flexible implementation in a wide assort-
ment of clinics or on-field progressions 
of already-established neuromuscular 
training exercises.107

sient attention,7 anticipatory trajectory 
estimation,138 and short-term memory.6 
These abilities may play a role in miti-
gating or avoiding injurious collisions 
or situations via improved anticipation 
and processing speed,63 which in turn 
may modify ACL-injury risk.141 Training 
with intermittent visual input also offers 
a simple, easy-to-implement, and novel 
stress to the neural control system that is 
compatible with current neuromuscular 
training exercises. The disrupted visual 
feedback may more closely simulate the 
neurocognitive demands of activity in 
the safety of a controlled clinic or field 
environment under the supervision of a 
qualified professional. Such stroboscopic 
visual training can also be tailored to fit 
a desired difficulty level by altering the 
rate of stroboscopic interruption (ratio 
of opaque versus transparent status). 

Broad jump with reaction ball and 
unanticipated cut

Stand on both feet, jump out, land on both 
feet, and track the ball to determine cut 
direction. Progress to decrease 
anticipation time from landing to ball 
release and cut direction

Exercise

Single-leg hop with air target, unstable 
landing and reaction ball

Stand on 1 leg, jump forward, contact air 
target in flight with opposite hand of 
jump-landing leg; on landing, catch ball. 
Shown with Vertec target at 50% of 
maximum jump height

Single leg, air target, and reaction ball

Stand on both feet with knees slightly bent, 
then jump and rotate 180° while in the air. 
The opposite hand of the landing foot 
reaches out to contact a target. When 
landing, catch the ball. Shown with Vertec 
target at 50% of maximum jump height

FIGURE 4. Examples of higher-level, dynamic neuromuscular training exercises incorporating visual target acquisition, environmental interaction, anticipatory ability, unstable 
surfaces, and stroboscopic visual interference, using stroboscopic glasses.



journal of orthopaedic & sports physical therapy  |  volume 45  |  number 5  |  may 2015  |  387

(Nike, Inc), to web-based applications, to 
simple paper or object manipulation.35,47 
Software or full electronic station setups 
are ideal and the literature supports their 
ability to increase performance metrics in 
athletes, but the clinician may not have 
access to this type of technology. Alter-
native mechanisms to train the visual 
system with minimal equipment include 
the use of a tachistoscope (flash cards of 
objects/numbers/letters of increasing 
value that must be attended to and re-
called) to improve object recognition in 
the visual field, a Brock string (string of 
colored balls at different distances held 
to the face; the participant must focus on 
each one in sequence) to improve occulo-
motor muscle capacity to focus on targets 
rapidly, and saccades (charts of random 
letters on a wall; the player must focus on 
each one and call out letters in sequence) 
to improve rapid visual processing.

Motor Learning Applications
The increased level of cortical drive dur-
ing movement, seen in individuals with 
an ACL injury, provides a neurological 
mechanism18,65,79 to explain the greater 
amount of cocontraction and muscle-
guarding strategies seen after injury.146 
Such a neuromuscular control strategy is 
consistent with an increase in internal fo-
cus of control, likely due to the increased 
conscious awareness of the injured joint 
and its movement as opposed to atten-
tion to the external environment.58,155 
Rehabilitation guidelines that focus on 
explicit feedback (eg, contract quadri-
ceps or keep knees over your toes) might 
be further promoting the top-down cor-
tical and visual feedback control of the 
movement, as opposed to facilitating a 
return to a more autonomic somatosen-
sory feedback control and visual feedback 
on the environment. As discussed earlier, 
the increased activation of the presupple-
mentary motor area to perform a simple 
knee joint movement79 further demon-
strates the increased need for cortical 
motor planning of movement after ACL 
injury. The implications of these findings 
are concerning for return to sport, as the 

Visual-Motor Training
Stroboscopic training, dual tasking us-
ing environmental interaction or adding 
visual obstruction, and facilitating motor 
learning are methods to decrease visual 
feedback during established exercises to 
make vision a less salient form of infor-
mation for motor programming. These 
strategies may stimulate the CNS to re-
weight information from the somatosen-
sory and vestibular inputs to decrease 
excessive reliance on visual feedback. An 
alternative to reducing visual feedback 
dependence is to make the visual pro-
cessing system more efficient and able 
to handle the increased demand. The 
injury may only allow so much sensory 
adaptation, and a degree of increased vi-
sual feedback may have to be regulated 
to maintain neuromuscular integrity 
during action, regardless of how much 
we attempt to force proprioceptor or ves-
tibular upregulation. In this case, visual 
training in isolation or in combination 
with neuromuscular training methods 
may provide a means to further address 
the compensatory neuroplasticity fol-
lowing injury. Visual training has been 
shown to enhance sport performance35,106 
and improve reaction time and visual 
processing ability.6,7,138 Simply increasing 
these fundamental neurocognitive at-
tributes may allow the athlete to handle 
the dual task of maintaining knee control 
while interacting with the environment 
and responding to potentially injurious 
situations.

Many methods for training the visual 
system exist, and each one tends to fo-
cus on a different visual construct. These 
constructs include occulomotor control, 
multiple-object tracking, visual sensitiv-
ity, spatial attention, visual memory, reac-
tion time, and processing speed. Several 
commercial tools exist that target 1 or 
more of these visual processing attributes. 
These tools range in cost and approach, 
from high-level computer-based systems, 
such as CogniSens (CogniSens Inc, Mon-
treal, Canada), Dynavision (Dynavision 
International LLC, West Chester, OH), 
and the SPARQ Sensory Training Station 

dation6 that, in turn, improve the use of 
afferent information for guiding motor 
control. Regardless of the mechanism, 
this training may improve the transition 
to athletic activity by decreasing depen-
dence on vision to maintain dynamic 
motor control, allowing its use for envi-
ronmental interaction on return to the 
complex athletic environment.

Indirect Visual Distraction
Other techniques to modify visual feed-
back outside of stroboscopic eyewear 
may be more accessible and still provide 
a means to encourage adaptive neuro-
plasticity. Progressively increasing the 
difficulty of the sensorimotor challenge 
can not only facilitate neuroplasticity 
for motor control, but also improve sen-
sory integration and address the visual 
processing bias. The key considerations 
to completing the latter are the focus of 
attention, task complexity, visual input, 
and cognitive load during rehabilita-
tion.29,126 Many mechanisms, such as in-
corporating reaction-time components,126 
ball tracking, engaging other players,102 
adding decision-making29 or anticipa-
tory aspects,126 and having the patient 
dual task112 by engaging the upper ex-
tremity while performing lower extrem-
ity exercises or occupying the mind with 
memory or related tasks, can increase the 
neural demand of neuromuscular train-
ing strategies. Recently, Negahban et 
al112 used a classic dual-task paradigm by 
having individuals post–ACL reconstruc-
tion maintain single-leg postural control 
while performing a cognitive task (hold-
ing a string of numbers in mind). This 
additional demand degraded postural 
stability in the ACL cohort but had little 
effect in control participants. This builds 
on previous work that has established 
that adding environmental interactions, 
such as a target, another player, a ball, or 
decision making, has greater influence 
in those with ACL injury.42,73,151 Conse-
quently, strategies to address these per-
formance deficits should be incorporated 
in neuromuscular training targeting the 
transition from clinic to activity.
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tor control, this may decrease the ability 
to compensate for environmental stimuli 
and attenuate unanticipated maneuvers, 
such as cutting or landing, that depend 
on quick visual processing.31,72,102 Future 
studies should investigate the potential 
association of varying visual processing 
capabilities and sensorimotor neural in-
tegration with musculoskeletal risk, in 
addition to investigating visual feedback 
modification or visual-motor additions 
to neuromuscular training in relation to 
injury prevention.

CONCLUSION

T
his review highlights a concep-
tual framework for integrating a 
variety of visual-motor constructs 

during neuromuscular rehabilitation as 
a future avenue of research to optimize 
musculoskeletal therapy interventions. 
A strength of these recommendations 
is that they act as adjunct strategies to 
foundational neuromuscular techniques 
for optimizing strength, multiplanar knee 
and trunk control, and movement asym-
metries.45 These suggestions provide an 
opportunity to supplement more tradi-
tional interventions by further targeting 
neuroplastic, cognitive, and visual-mo-
tor capabilities. The clinician can ap-
proximate the neurocognitive demands 
of higher-intensity athletic activity in a 
safe, controlled, and—most important-
ly—feedback-rich environment under the 
supervision of a well-trained professional 
before reintegration into sport. Recogni-
tion of the visual-motor implications of 
neuromuscular control and injury recov-
ery and prevention, combined with new 
technologies and approaches, may help 
to mitigate postinjury movement dys-
function and decrease injury risk when 
returning to activity. t
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tion and injury prevention programs. Im-
plementation can be as basic as adding an 
eyes-closed or a cognitive dual task dur-
ing quadriceps contraction sets as the pa-
tient progresses toward the autonomous 
stage in that exercise during the first few 
clinic visits, or including environmen-
tal stimuli (other players, unanticipated 
direction changes, target acquisition, or 
reaction ball) during functional tasks lat-
er in rehabilitation, and can advance to 
highly complex virtual reality simulations 
that are increasing in quality and accessi-
bility.43,51 Collectively, these vision-based 
interventions are gaining widespread use 
in a number of clinical (eg, concussion, 
cognitive disorders) and nonclinical (eg, 
entertainment, performance enhance-
ment, military) applications, and future 
integration with musculoskeletal injury 
rehabilitation may create an entirely new 
avenue for improving neuromuscular 
function to prevent and treat orthopae-
dic injuries.

Visual-Motor Training in  
Primary ACL Injury Prevention
The presented evidence suggests that 
ACL injury can alter the nervous system 
utilization of somatosensory input, affer-
ent integration, and motor output. These 
neuroplastic effects induce a neuromus-
cular control strategy that increases de-
pendence on visual feedback to regulate 
dynamic stability of the system. However, 
some of the described postinjury adapta-
tions may actually be present prior to in-
jury, potentially playing a role in primary 
ACL risk. Swanik et al141 reported initial 
findings of decreased visual process-
ing capabilities in individuals prior to 
ACL injury. Using neurocognitive test-
ing, they found that a decrease in visual 
processing speed and reaction time was 
predictive of subsequent ACL injury.141 
A theorized mechanism for visual func-
tion influencing injury risk is in the abil-
ity to prepare the neuromuscular system 
in anticipation of high-risk situations, 
maneuvers, or incoming players.63,105 If 
visual processing resources are taxed to 
maintain the afferent input for knee mo-

demands of complex, more dynamic mo-
tion may exceed the capability of the re-
gion to program optimal movement and 
may contribute to injury risk.

The classic mechanism to rectify in-
creased reliance on cortical mechanisms 
for lower extremity control is to advance 
patients to the autonomous stage of mo-
tor learning.95 In early-stage rehabilita-
tion, explicit focus is needed to restore 
muscle function, and internally focused 
feedback such as “contract your quad,” 
“knees over the toes,” or “bend your knee” 
is commonly used. Advancing rehabilita-
tive feedback to an external focus, such as 
“land on the markers” or “touch the target 
as you land,” will facilitate transfer of mo-
tor control to subcortical regions and free 
cortical resources for programming more 
complex motor actions.58,127,137 Such motor 
learning principles applied to neuromus-
cular training may assist in transferring 
knee control strategies to the athletic field 
when conscious attention is being paid 
to the environment and not knee posi-
tion.127,136 The additions to neuromuscu-
lar training previously discussed can also 
help speed the process of acquiring the 
ability to transfer motor skills to the field.

Limitations
The framework described above provides 
an opportunity to develop hypothesis-
driven clinical and research constructs 
for further exploration. Prior to stead-
fast clinical recommendations, rigorous 
longitudinal and controlled trials should 
be undertaken; however, exploration 
of novel neuromuscular re-education 
techniques may provide immediate en-
hancement to current rehabilitation and 
prevention methods. We have suggested 
some methods to address the postinjury 
neuroplasticity during the rehabilitation 
process, and, undoubtedly, clinicians and 
researchers will develop more novel and 
applicable methods in the near future. 
There is insufficient evidence to recom-
mend one method or system over any 
other at this time, but we encourage cli-
nicians to consider visual-motor function 
on any level as a part of ACL rehabilita-
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